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 Abstract: This paper presents a new maximum-power-point-tracking (MPPT) controller in wind power 
generation using artificial neural networks (ANN) in order for making the wind turbine function in optimum 
working point and get high efficiency of wind energy conversion at different conditions. The algorithm uses fully 
connected recurrent neural network and is trained online using real-time recurrent learning (RTRL) algorithm in 
order to avoid the oscillation problem in wind-turbine generation systems. It generates control command for 
speed of the rotor side converter using optimal algorithm to enable the control system in order to track the 
maximum power point. The rotor speed and wind-turbine torque are the inputs of the networks, and the command 
signal for the rotor speed of wind turbine is the output. Simulation results verify the performance of the proposed 
algorithm.  
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1 Introduction 
Since the fossil fuels gradually exhausting and 
concerns about environmental pollution continuously  
rising, the usage of the renewable energies has 
become important in the power networks. Renewable 
energy sources like wind, photovoltaic, and bio-fuel 
cells can be interfaced to the power network using 
step-up converter systems for a high power 
transmission [1-3]. 
Due to the promising developments in the wind 
power generators as well as the advances in power 
electronic components and their applications in high-
power systems, wind energy becomes inevitable and 
more interesting in electrical power applications. The 
current studies in this area for increasing the wind-
turbine generator efficiency and MPPT  methods up 
to now can be classified into three categories:  

1)Tip-speed ratio (TSR) method discussed in [4-6], 
is used to tune the generator rotational velocity 
in order to reach to an optimum TSR value in 
which the velocity of rotor and wind velocity are 
either measured or computationally estimated 
[28]. 

2)Power signal feedback (PSF) method studied in 
[7-9], requires the prior information about the 
curve of the wind turbine maximum power in 
order to be given to an intelligent control system 
for tracking.  

3)Hill-climb searching (HCS) method discussed in 
[10-18], is an on-line algorithm in which the 
peak power point of the wind turbine is being 
continuously searched and delivered at the 
output side. The HCS algorithm includes the 
observation and perturbation control methods 
too . It has been often used for the MPPT 
problem because of its simplicity for 
implementation [16-18].  

In this paper, a new method has been proposed that 
using MPPT control algorithm deals with the variable 
wind speed. This method has been developed based 
on Fully connected recurrent neural networks that 
includes only one hidden layer. The neuron weights 
of the network layers are being continuously adjusted 
by real-time recurrent learning (RTRL) algorithm, 
which is more suitable for on-line continuous training 
compared to the off-line learning algorithms like 
back propagation learning algorithm. The tracking 
controller developed in this paper is an algorithm 
based on a HCS type control, in which the control 
system searches for the maximum power point during 
its functioning [28, 29].  
The inputs of the network are the rotor velocity and 
wind turbine torque, hence, there is no requirement 
for anemometer and wind velocity measurement for 
control system. A doubly fed induction generator 
(DFIG) wind turbine has been chosen to implement 
the new MPPT algorithm.  Simulation results show 
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the performance of the proposed method which is 
trained online using real-time recurrent learning 
(RTRL) algorithm. 
The next sections of the paper is organized as 
follows: the modelling of the wind turbine has been 
performed in the second section; The third section 
discusses the field-oriented control applied on DFIG 
system; forth section presents the control strategy for 
DFIG-based wind turbine with MPPT; The structure 
of the proposed recurrent neural network has been 
presented in section five and the simulation results 
and discussion have been organized in section six. 
 

2 Wind Turbine Modelling 
The actual mechanical power output of a wind 
turbine can be written as [19] 
 

     Pm = 
�

�
�	���	��

�	��(�.�)                (1) 

 
where,  R is the wind turbine blade radius, VW is the 
wind velocity, ρ is the air density and �� is the 
coefficient of performance.	�� is a function of tip 
speed ratio,  �, and blade pitch angle, �. The tip speed 
ratio is defined as 

� = 	
���

��
																																(2) 

where, �� is the the turbine rotor angular velocity of 
in rad/s. �� can be calculated using the relation  
 

�� = 0.5176�
���

��
− 0.4� − 5� �

���

�� + 0.0068�   (3) 

 
where 

�� =
1

1
� + 0.08�

+
0.035
1 + ��

																					(4) 

 
Fig. 1 shows the power coefficient �� as the function 
of tip speed ratio λ. The power coefficient is at its 
maximum value at a certain value of tip speed ratio 
that is called optimum tip speed ratio ����. It is the 
goal to reach to the maximum possible power 
generation for which the turbine should always 
operate at ����. Control of the turbine rotational 

velocity to the optimum speed of rotation leads to 
reach the maximum power generation [28]. Fig. 1 
implies the �� − ��  curves at different wind 
velocities as shown in Fig. 2. 
 

 
Fig. 1: Power coefficient curve in terms of  tip speed ratio 

 
As shown in Fig. 2 at the maximum point in various 
wind velocity, we have 

���

���
= 0																															(5) 

 
In this study concerning (5) a new adaptive MPPT 
algorithm has been proposed which employs an 
artificial neural network that contains the information 
of wind-turbine torque, and rotational velocity as the 
inputs of the recurrent neural networks has been 
developed.  The wind-turbine torque and the 
rotational velocity are involved in the output power 
equation as (6) [26, 32]. 
 

�� = ����																													(6) 
 
Thus, getting the maximum value of ����  will lead 
to generating maximum power at each specific wind 
velocity.  

 
Fig. 2: Mechanical Power vs. turbine speed 
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Fig. 3: DFIG Wind Turbine and control scheme 

 

3 Field-oriented control for DFIG 
System 

A DFIG-based wind turbine generally consists of an 
induction machine with wounded rotor, wind turbine, 
rotor side converter (RSC), grid side converter (GSC) 
and DC-link capacitor. The block diagram of the 
turbine and control system has been shown in Fig. 3.  
The wound rotor induction machine stator winding is 
basically connected to the power network directly 
while the rotor winding is connected to the network 
via AC/DC/AC power converter in which the IGBTs 
are functioning. The power converter consists of a 
couple of components: the grid-side converter (GSC) 
and the rotor-side converter (RSC) with a DC 
capacitor placed between [30].  
 

3.1 Control system of rotor side converter  
The rotor side converter in stator-voltage oriented 
frame has been vector controlled. The stator-voltage 
oriented frame is utilized for the controller design, in 
which the d-axis and the q-axis rotor current 
components are for active and reactive power (or 
voltage) control separately. After comparison of the 
rotor d-current and q-current reference values to the 
real rotor d and q currents, error signals pass through 
PI controllers to maintain the d-q voltage control 
signals in the power converter [20]. 
The ANN-based MPPT controller, proposed in this 
paper, generates ����, the reference speed which 

when compared to rotor rotational speed, produces 
the rotor d-axis current reference value via a PI 
controller. Hence, maximum power will be extracted 
from wind turbine.  
 

3.2 Grid side converter control system 
The grid-side power converter controls the DC-link 
voltage by stabilizing it constant in order to generate  
or (possibly) absorb  reactive  power.  The  DC-link 
voltage is the d-q reference frame oriented along the 
grid stator voltages, enabling independent active and 
reactive power control that flow between the grid and 

the converters. The actual DC-link voltage is 
compared with reference value �������.  

 

 
Fig. 4: Rotor side vector control 
 

 

 
Fig. 5: Grid side vector control 

 
The difference between these couple of values will be 
given to a couple of PI controllers designed for 
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generation of the reference value of d-axis grid 
voltage. On the other hand, the difference between 
the actual reactive power and the  reference value  
���� is going to be given to another couple of PI 

controllers in order to generate the reference value of 
the q-axis grid voltage [21, 30]. 
Typical block diagrams of RSC and GSC vector 
control systems are demonstrated in Fig. 4 and Fig. 
5, respectively. For brevity and to avoid proposing 
unnecessary details, vector controllers formulation 
hasn’t discussed in this study [22, 23]. 
 

4 The MPPT control strategy for 
DFIG-based wind turbines  

In a DFIG-based power wind turbine whereas only a 
part of total power passes through rotor connection to 
the grid, the power converter handles a fraction of the 
power between 20% - 30%. That is why the losses of 
the power electronic in the power converter is very 
low comparing a system in which the converter 
handles all the power. It has the advantage of needing 
smaller and cheaper back-to-back converters 
compared to singly-fed machines, but the rotor speed 
can only vary by a limited amount, typically 30% 
either side of synchronous speed. In this study, 
bounds to this operational rotor speed range are 
called ω�����			and			ω����� essential values. 
Typically ������	�� and ����������  wind velocities 
are chosen to correspond with above-mentioned 
essential rotor speeds by adjusting required gearbox 
ratio [22].  Fig. 6 shows how the mechanical power 
varies with the wind velocity for a wind turbine with 
variable-speed, characterized by 4 wind velocities, 
cut-in, nominal, rated and cut-out. Below cut-in wind 
velocity curve, there is not enough torque exerted by 
the wind force on the rotating turbine blades, or in 
another case of very slow rotation, power generated 
is less than power losses. The increment of the speed 
cause the wind turbine begin to generate electrical 
power. 
 

 
Fig. 6: Mechanical power in terms of wind velocity. 

In order to keep generator at its controllable range, 
converters have to keep rotor speed at  ω����� for 
wind velocities between nominal and rated values. 
Rated wind velocity is where the generator produces 
its rated power. Above the rated wind velocity pitch 
adjustment should be applied in order to limit the 
attainable wind power to its maximum.  
Optimizing (6) via genetic algorithm leads to the 
cube of wind velocities and rotor speeds, which 
maximize ��(�.�). As shown in Fig. 7, the 
relationship between these values, is linear. Thus, 
according to (1), (3) and (6)  
 

Pm-max=
�

�
�	���	��

�	�����������.0�							   (7) 

(��)��� 	= 	
1

2
�	���	��

�	�����������.0�				(8) 

 
any specific rotor speed in controllable range can be 
mapped onto its corresponding (��)���.  
 

 
Fig. 7: Optimal rotor speed cubed which lead to ������ 
as a function of wind velocity cubed. 

 

5 The structure of the proposed 
recurrent neural network 

Recurrent (interactive) neural networks are the 
networks that can have signal flow in both directions 
by employing feedbacks in the neural network links. 
Recurrent networks are powerful enough to dial with 
complicated problems. The outputs of the earlier 
computations are fed back into the neural network 
again, that makes them to have a kind of memory 
effect. The neural networks with feedback have 
dynamic states that change continuously to reach a 
stable state. The network states remain stable until 
new inputs makes them change and reach a new 
stable point [31].  
Online learning, which is applied to proposed 
recurrent network, is used when data becomes 
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available gradually in a sequential order to map the 
data set to the corresponding meaning. It has the 
advantage that does not need to wait until all of the 
training data to be collected. The on=line training 
uses the arrived signal as the new training sample to 
be used to train the network. It causes the network 
getting trained gradually during it function.  
In this case, online learning eliminates the necessity 
of measuring wind velocity by anemometers, which 
are imprecise and have some other disadvantages like 
the distortion of wind velocity in relation to 
precipitation. 
Fig. 8 shows the layout of a fully connected recurrent 
neural network which is implemented in this paper. 
��	and	�����	 represent external input signals, 
which are rotational speed of rotor and wind-turbine 
mechanical torque respectively, and  ���� represents 

output signal which is rotor speed reference 
command.  

 
Fig. 8: Fully connected recurrent network [24]. 

 
As seen in Fig. 8, the state of a nonlinear discrete-
time system has been denoted by 3-by-1 vector Xn. in 
the same way,  the input applied to the system has 
been denoted by the 2-by-1 vector Un and the 
corresponding output of the system has been denoted 
by the 1-by-1 vector Yn [24], [31]. the system (state) 
equation of the model for n = 0, 1, 2, ...  is 
 

���� = Φ�(��.��� + ��.���)														(9) 
 
And the measurement equation of the model is 
 

�� = ����																													(10) 
 
where Wa is a 3-by-3 matrix  representing the weights 
of the 3 neurons of the hidden layer that are feeding 
back to the input layer, Wb is a 3-by-2 matrix 
representing the weights of the hidden neurons that 
are connected directly to the source nodes of the input 
layer [24].  

To simplify the composition of (9), from the state 
model the use of bias has been excluded. Wc is a 1-
by-3 matrix representing 1 linear neuron weights in 
output layer that is connected directly to the hidden 
layers. The output layer does not have the bias for 
simplification reasons[24]. Φ:	�� →	��  is a 
diagonal map described by 
 

Φ:	�

��

��

��

� → �

�(��)
�(��)
�(��)

�																									(11) 

 
The function �(�) which is a nonlinear function, 
represents the sigmoidal logistic activation function 
of the hidden neurons. 

�(�)=
1

1 + ���
																										(12) 

 
So, the proposed neural network has a couple of 
neuron layers: a concatenated input-feedback layer 
and a processing layer of computation nodes. Also, 
the connections of the neurons include both feed 
forward links and feedback links [24]. (9) can be 
written in another form as 
 

���� = �

�(��
���)

�(��
���)

�(��
���)

�.�� = �
0
0
0
�															(13) 

 
where the 5-by-1 vector �� is the neuron weight 

vector j which is 

�� = �
��.�

��.�
�									� = 1.2.3						(14) 

 
where ��.� and ��.� are the jth column in the weight 

matrices that is transposed ��
� and	��

�, respectively 
[24]. And the 5-by-1 vector �� is defined by 
 

�� =

⎣
⎢
⎢
⎢
⎡
��.�

��.�

��.�

��.�

��.�⎦
⎥
⎥
⎥
⎤

																												(15) 

 
5.1 RTRL algorithm and weight updating 

rule  
The RTRL algorithm has the capability that the 
weights of the fully connected recurrent network is 
being adjusted, in real-time while the network is in 
function and continues to perform signal processing 
[24]. The adjustment that has been applied to the 
weight vector ��.� of neuron j for n = 0, 1, 2, ...  is 

determined by  
Δ��.� = ���.���Λ�.���							� = 1.2.3				(16) 
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where  
�� = [1, 0, 0]                     (17) 

 
where � is learning rate, �� is 1-by-1 error vector, 
��.� is wind-turbine torque and Λ�.��� is calculated 
independently by 
 

Λ�.��� = Φ����.�Λ�.� + ��.��.Λ�.� = 0									 

			� = 1.2.3																													(18) 
 
where, as mentioned before 
 

��.� = �
���	���	���

���	���	���
���	���	���

�																				(19) 

 
��� is the weight connecting ��.� to the neuron j.  The 

definitions of Λ�.�.		��.� and Φ� are given in 

following descriptions, respectively 
1. Λ�.� is a 3-by-5 matrix defined as the partial 

derivative of the state vector Xn with respect 
to the weight vector ��: 

 

Λ�.� =
���

���
																							(20) 

 
2. ��.� is a 3-by-5 matrix in which the rows are 

zero except for the jth row, that is equal to the 
vector ��

�transpose  
 

��.� = �
0
��

�

0
� → ��ℎ	���					� = 1.2.3									(21) 

 
3. Φ� is a 3-by-3 matrix which is diagonal and 

its jth diagonal element equals to the partial 
derivative of its activation function; thus 
 

Φ� = ����(��(��
���).�

�(��
���).�

�(��
���))		(22) 

 
5.2  Tracking Error 

In this study, the 1-by-1 error vector is defined as 
 

�� = ��.�����.� −	(��)���.� 														

= ��.����� −	(��)���.�							(23) 
 
The sum of squared errors (SSE) at time-step n is 
defined in as a function of �� by 
 

�� =
1

2
��

���																										(24) 

 
Instantaneous estimate of the gradient has been used 
for training the recurrent network in real-time, that 

leads to an approximation to the steepest descent 
method. (24) has been considered as the cost function 
that has to be minimized, and differentiated with 
respect to the weight vector	��, and, using the chain 

rule of calculus, (25) is obtained [24, 25]. 
 

���
���

= ��.���Λ�.���							� = 1.2.3				(25) 

 
which leads to weight update rule formulation, (16), 
afore-mentioned. 
 

5.3 Estimating Maximum Tω 
(��)���.� is achieved by a simple single-layer feed 
forward ANN with a single input, one output and a 
single hidden layer with 15 neurons which trained 
offline using input and target datasets showing in Fig. 
9. m and n are arbitrary number of elements. Based 
on mentioned idea in section IV, that linearity 
between optimal rotor speed and wind velocity both 
cubed, in controllable range (±30%	∆��), can lead 
to map �� onto (��)���.  
 

increasing sequence
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n
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n
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.

.
2

3
× w

3
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Fig. 9: Input and target datasets for training feed-forward 
ANN. 
 

���� is defined as 

���� =
1

2
��	������																			(26) 

 
According to (7) and (8),  ������

�   is equal to 

maximum possible value of  ����  for a particular 
value of wind velocity. As inferred from (23) the 
difference between the ������  and (��)��� is used 

to update the ANN weights to generate ���� .  

The ANN MPPT is based on an idea that for all 
values of the wind velocities the error between the 
������  and (��)��� reaches to the minimum when 
the generator operates at its maximum working 
power point. When the wind turbine operates at other 
operating points (not necessarily at the maximum 
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point), the weights of recurrent neural networks will 
be modified accordingly. The new weights of RNN 
helps the MPPT controller to generate control 
command for reference speed to reduce the error and 
moves the system to maximum power point. The 
block diagram of the proposed MPPT controller has 
been demonstrated in Fig. 10. 

X
Tm,nwref , n +

_
S

en

RNN

(Tw)max , n

wref , n

wr,n

Tm,n

^3
Single-layer
feedforward

ANN

 
Fig. 10: ANN MPPT controller structure 
 

 

6 Simulation Results 
To illustrate the effectiveness of the proposed 
controller, simulation is carried out using 
MATLAB/Simulink simulation tool. The important 
parameters of the power generation system has been 
presented in Table 1. A rectangular, a sinusoidal and 
a noisy wind velocity profile has been applied to the 
wind turbine as shown in Fig. 11, Fig. 12 and Fig. 13, 

respectively. These figures show the wind velocity, 
power coefficient, rotor speed, reference rotor speed 
(dash line), and generated active power during the 
operation of the wind turbine.  
 
Table 1: Important parameters of the power generation 
system 

Parameter Value 
Rated power 1.5 MW 

Rated stator voltage 575/995 V (D/Y) 

Synchronous speed 1200 rpm 

Nominal wind velocity 12 m/s 

Maximum Cp 0.48 
Optimal λ 8.1 

 
Results of simulation show suitable performance of 
the proposed MPPT controller. As seen, the 
performance coefficient  of the wind turbine, Cp, is 
almost at its maximum value of 0.48 for the wind 
velocity while sudden changes have been applied. 
As shown in Fig. 12, with sinusoidal wind velocity 
profile with variable amplitude, the proposed MPPT 
controller makes the performance coefficient Cp to 
be kept nearly at 0.48 that is the maximum value. Fig. 
13 shows a noisy wind velocity profile which is 
similar to real wind profiles, proposed controller 
shows suitable performance keeping the performance 
coefficient Cp being kept fairly at its maximum 
value. 
As can be seen in Fig. 14, the tracking error is getting 
close to minimum value (zero) despite of the 
variations in wind velocity applying rectangular, 
sinusoidal and noisy profiles, respectively. 

Fig. 11: Simulation results in the case when sudden changes applied. 
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7 Conclusions 
In this study, an ANN-based MPPT controller for a 
variable speed wind power generation with doubly 
fed induction generator has been proposed to protect 
the wind-turbine generation system from oscillation. 
Basically, the torque characteristics of the wind-
turbine is determined by the conditions of the wind 
velocity, thereby the algorithms that change the 
maximum power point location needs to be 
developed in order to face the maximum-power-

point-tracking (MPPT) control problem to get the 
optimal efficiency  from wind energy at different 
operating conditions. The proposed method uses 
fully connected recurrent neural network (RNN) 
trained online using real-time recurrent learning 
(RTRL) algorithm, to generate control command to 
reach the optimum speed of the rotor side converter 
in order to enable the system to move toward the 
maximum power point. From the simulation results, 
the validity of the proposed MPPT controller has 
been verified. 

Fig. 13: Vw, Cp, W and P plots in the case that the noisy wind velocity applied 

Fig. 12: Vw, Cp, W and P plots in the case of the wind velocity has sinusoidal changes. 
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